Digital Communications Laboratory

Dr. Mohammad Javad Emadi

Pouya Agheli

Chapter Two

Analog Modulations and Demodulations

Electrical Engineering Department Amirkabir University of Technology Autumn 2020

E-mail: https://bit.ly/dclabAUT digitalcomslab@gma il.com digitalcomslab@gmail.com

Section A

Amplitude Modulations and Demodulations

AM-DSB-SC Modulation Slide 3 of 30

Expressions:

$$
s_i(t) = A_i \cos(2\pi f_i t) = A_i \cos(\omega_i t)
$$

$$
s_c(t) = A_c \cos(2\pi f_c t) = A_c \cos(\omega_c t)
$$

$$
s_{am-dsb-sc}(t) = A_i \cos(\omega_i t) A_c \cos(\omega_c t)
$$

$$
s_{am-dsb-sc}(t) = \frac{A_i A_c}{2} \Big(\cos(\omega_c - \omega_i)t + \cos(\omega_c + \omega_i)t \Big)
$$

Modulator:

AM-DSB-TC Modulation

Slide 4 of 30

Modulator:

Expressions:

$$
\begin{cases}\ns_i(t) = A_i \cos(2\pi f_i t) = A_i \cos(\omega_i t) \\
s_c(t) = A_c \cos(2\pi f_c t) = A_c \cos(\omega_c t)\n\end{cases}
$$

$$
s_{am-dsb-tc}(t) = \left[A_o + A_i \cos(\omega_i t)\right] A_c \cos(\omega_c t)
$$

$$
s_{am-dsb-tc}(t) = A_o \left[1 + m \cos(\omega_i t) \right] A_c \cos(\omega_c t)
$$

$$
= A_o A_c \cos(\omega_c t) + \frac{A_o A_c m}{2} \left(\cos(\omega_c - \omega_i)t + \cos(\omega_c + \omega_i)t \right)
$$

AM-SSB Modulation

Slide 5 of 30

Expressions:

$$
s_{am-ssb}(t) = s_i(t) \mathfrak{Re}\bigg[s_c(t)\bigg] \mp \overline{s_i(t)} \mathfrak{Im}\bigg[s_c(t)\bigg]
$$

 $s_i(t) = A_i \cos(2\pi f_i t) = A_i \cos(\omega_i t)$ $s_c(t) = A_c \cos(2\pi f_c t) + A_c \sin(2\pi f_c t) = A_c \cos(\omega_c t) + A_c \sin(\omega_c t)$

 $s_{am-ssb}(t) = A_i \cos(\omega_i t) A_c \cos(\omega_c t) \mp A_i \sin(\omega_i t) A_c \sin(\omega_c t)$

$$
s_{am-ssb}(t) = \frac{A_i A_c}{2} \left(\cos(\omega_c - \omega_i)t + \cos(\omega_c + \omega_i)t \right)
$$

$$
= \frac{A_i A_c}{2} \left(\cos(\omega_c - \omega_i)t - \cos(\omega_c + \omega_i)t \right)
$$

AM-VSB Modulation

Expression:

$$
s_{am-vsb}(t) = BPF\left\{ \left[A_o + s_i(t) \right] \times s_c(t) \right\}
$$

Slide 6 of 30

Evaluation Table:

Note: Each technique has some advantages and disadvantages, so based on deployment factor, a modulation should be selected.

Section B

Angle Modulations and Demodulations

Conventional PM and FM

Expressions: $\leftarrow 2 \times 10^{-4}$ $m(t)$ $\mathbf{\hat{m}}(t)$ 20,000 \vert 1 $t \rightarrow$ $\varphi_{\text{PM}}(t) = A \cos[\omega_c t + k_p m(t)]$ $t \rightarrow$ PM: $-20,000$ Instantaneous angular $\varphi_{\rm FM}(t)$ $\varphi_{\rm PM}(t)$ frequency for PM: $t \rightarrow$ Instantaneous angular $\omega_i(t) = \omega_c + k_f m(t)$ frequency for FM:

$$
\text{FM: } \left| \varphi_{\text{FM}}(t) = A \cos \left[\omega_c t + k_f \int_{-\infty}^t m(\alpha) d\alpha \right] \right|
$$

Slide 9 of 30

Conventional FM

Slide 10 of 30

Time

Time

Time

 $s_i(t)$

 $c(t)$

Expressions:

$$
s_{f_m}(t) = A_c \cos\left(\omega_c t + \frac{\theta_{f_m}(t)}{\theta_{f_m}(t)}\right) = A_c \cos\left(\omega_c t + 2\pi K_{f_m} \times \int_{-\infty}^t s_i(t) dt\right)
$$

$$
s_i(t) = A_i \cos(2\pi f_i t) = A_i \cos(\omega_i t)
$$

$$
s_{fm}(t) = A_c \cos(\omega_c t + \beta_{fm} \sin(\omega_i t))
$$

$$
\omega_i = 2\pi f_i \qquad \omega_c = 2\pi f_c
$$

Modulator:

INFORMATION
SIGNAL

Magnitude

Magnitude

A

п.

Information signal is a baseband signal;

a sum of sinusoids

When there is no control input, the signal output
by the VCO is a pure cosinusoid

Implitude

mplitude

Frequency (kHz)

Analog Phased-Lock Loop (APLL) Section C

Analog PLL

Free-running angular frequency VCO: Instantaneous angular $\omega(t) = \omega_c + ce_o(t)$ $\phi_o(t) = ce_o(t)$ (A) frequency: Output signal: $B \cos[\omega_c t + \theta_o(t)]$

Loop Filter:

Input multiplied signal:

$$
AB \sin(\omega_c t + \theta_i) \cos(\omega_c t + \theta_o) = \frac{AB}{2} [\sin(\theta_i - \theta_o) + \sin(2\omega_c t + \theta_i + \theta_o)]
$$

Output signal: $e_o(t) = h(t) * \frac{1}{2} AB \sin[\theta_i(t) - \theta_o(t)]$

$$
= \frac{1}{2} AB \int_0^t h(t - x) \sin[\theta_i(x) - \theta_o(x)] dx
$$
 (B)

$$
\xrightarrow{\text{(A)}} \dot{\theta}_o(t) = AK \int_0^t h(t-x) \sin \theta_e(x) dx
$$

Phase error: $\theta_e(t) = \theta_i(t) - \theta_o(t)$

Slide 12 of 30

GNU Radio and SDR Section D

Preferred GRC Blocks:

Note: You may need other essential blocks.

Transmitter's Flow -Graph:

Channel's Flow-Graph:

Receiver's Flow-Graph:

Slide 17 of 30

GRC Example for AM -DSB -TC

Signals' Figures in Time Series:

Slide 18 of 30

GRC Example for AM -DSB -TC

Signals' Figures in Frequency Series:

GRC Example for AM -DSB -TC

Signals' Waterfall Figures:

Preferred GRC Blocks:

Note: You may need other essential blocks.

Transmitter's Flow-Graph:

Channel's Flow-Graph:

Receiver's Flow-Graph:

Slide 24 of 30

Signals' Figures in Time Series:

Slide 25 of 30

Signals' Figures in Frequency Series:

Slide 26 of 30

Signals' Waterfall Figures:

nooelec: We designed this SDR from the ground up in order to develop the best low-cost SDR in existence.

Frequency Range: 25MHz - 1750MHz **Phase noise @1kHz offset:** -138dBc/Hz (or better) **Phase noise @10kHz:** -150dBc/Hz (or better) **Phase noise @100kHz:** -152dBc/Hz (or better)

Assignments

Session Two

Problem:

Design AM-SSB via GNU Radio

Due: Oct. 13, 2020

Assignments

Session Three

Problem:

Design Conventional PM via GNU Radio

Due: Oct. 20, 2020